#!/usr/bin/env python
# -*- coding: utf-8 -*-
-basedir = "/usr/scripts/Note_Kfet_2015/"
-clientdir = basedir + "client/"
+clientdir = "./" # pour le client, on a les chemins en relatif
ca_certfile = clientdir + "keys/ca.crt"
server_rsa_pub_key = clientdir + "keys/server_rsa_key.pub"
# le module qui fait du rsa
-rsa_path = "/usr/scripts/Note_Kfet_2015/rsa_source/"
+rsa_path = clientdir+ "rsa_source/"
port = 4242
--- /dev/null
+# -*- coding:utf8 -*-
+
+import rsa
+
+import base64
+
+
+
+def lit(fi):
+ f=open(fi,"r")
+ a=f.read()
+ f.close()
+ return a
+
+
+def decoupe(s,taille):
+ l=[]
+ tranche=s[0:taille]
+ ind=0
+ while tranche!='':
+ l.append(tranche)
+ ind+=1
+ tranche=s[ind*taille:(ind+1)*taille]
+ return l
+
+def crypte(message,pub):
+ """Crypte le message, même si il est est trop long.
+ sort une chaîne b64-encodée avec les sauts de lignes à chaque découpage"""
+ # NB : ici, trop long veut dire >245,
+ # en vrai je sais pas comment on fait pour savoir
+ vraimessage=decoupe(message,245)
+ out=[]
+ for i in vraimessage:
+ lignecrypt=rsa.encrypt(i,pub)
+ out.append(base64.b64encode(lignecrypt))
+ return "\n".join(out)
+
+def decrypte(message,priv):
+ """Décrypte un long message, en prenant en entrée des lignes de b64"""
+ out=[]
+ vraimessage=message.split('\n')
+ for i in vraimessage:
+ lignecrypt=base64.b64decode(i)
+ out.append(rsa.decrypt(lignecrypt,priv))
+ return "".join(out)
+
+
+
+
+
+def litcles(privfile,pubfile):
+ priv,pub=None,None
+ if privfile!=None:
+ futurpriv=lit(privfile)
+ priv=rsa.PrivateKey.load_pkcs1(futurpriv)
+ if pubfile!=None:
+ futurpub=lit(pubfile)
+ pub=rsa.PublicKey.load_pkcs1(futurpub)
+ return priv,pub
+
+
+if __name__=="__main__":
+ priv,pub=litcles(privfile,pubfile)
+ message = raw_input("Entrez un message :")
+ print "message avant :\n%s\n"%(message)
+ message = crypte(message,pub)
+ print "message crypté (avec la clé publique) :\n%s\n"%(message)
+ message = decrypte(message,priv)
+ print "message crypté décrypté :\n%s\n"%(message)
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""RSA module
+
+Module for calculating large primes, and RSA encryption, decryption, signing
+and verification. Includes generating public and private keys.
+
+WARNING: this implementation does not use random padding, compression of the
+cleartext input to prevent repetitions, or other common security improvements.
+Use with care.
+
+If you want to have a more secure implementation, use the functions from the
+``rsa.pkcs1`` module.
+
+"""
+
+__author__ = "Sybren Stuvel, Marloes de Boer, Ivo Tamboer, and Barry Mead"
+__date__ = "2011-08-07"
+__version__ = '3.0.1'
+
+from rsa.key import newkeys, PrivateKey, PublicKey
+from rsa.pkcs1 import encrypt, decrypt, sign, verify, DecryptionError, \
+ VerificationError
+
+# Do doctest if we're run directly
+if __name__ == "__main__":
+ import doctest
+ doctest.testmod()
+
+__all__ = ["newkeys", "encrypt", "decrypt", "sign", "verify", 'PublicKey',
+ 'PrivateKey', 'DecryptionError', 'VerificationError']
+
--- /dev/null
+"""RSA module
+pri = k[1] //Private part of keys d,p,q
+
+Module for calculating large primes, and RSA encryption, decryption,
+signing and verification. Includes generating public and private keys.
+
+WARNING: this code implements the mathematics of RSA. It is not suitable for
+real-world secure cryptography purposes. It has not been reviewed by a security
+expert. It does not include padding of data. There are many ways in which the
+output of this module, when used without any modification, can be sucessfully
+attacked.
+"""
+
+__author__ = "Sybren Stuvel, Marloes de Boer and Ivo Tamboer"
+__date__ = "2010-02-05"
+__version__ = '1.3.3'
+
+# NOTE: Python's modulo can return negative numbers. We compensate for
+# this behaviour using the abs() function
+
+from cPickle import dumps, loads
+import base64
+import math
+import os
+import random
+import sys
+import types
+import zlib
+
+# Display a warning that this insecure version is imported.
+import warnings
+warnings.warn('Insecure version of the RSA module is imported as %s, be careful'
+ % __name__)
+
+def gcd(p, q):
+ """Returns the greatest common divisor of p and q
+
+
+ >>> gcd(42, 6)
+ 6
+ """
+ if p<q: return gcd(q, p)
+ if q == 0: return p
+ return gcd(q, abs(p%q))
+
+def bytes2int(bytes):
+ """Converts a list of bytes or a string to an integer
+
+ >>> (128*256 + 64)*256 + + 15
+ 8405007
+ >>> l = [128, 64, 15]
+ >>> bytes2int(l)
+ 8405007
+ """
+
+ if not (type(bytes) is types.ListType or type(bytes) is types.StringType):
+ raise TypeError("You must pass a string or a list")
+
+ # Convert byte stream to integer
+ integer = 0
+ for byte in bytes:
+ integer *= 256
+ if type(byte) is types.StringType: byte = ord(byte)
+ integer += byte
+
+ return integer
+
+def int2bytes(number):
+ """Converts a number to a string of bytes
+
+ >>> bytes2int(int2bytes(123456789))
+ 123456789
+ """
+
+ if not (type(number) is types.LongType or type(number) is types.IntType):
+ raise TypeError("You must pass a long or an int")
+
+ string = ""
+
+ while number > 0:
+ string = "%s%s" % (chr(number & 0xFF), string)
+ number /= 256
+
+ return string
+
+def fast_exponentiation(a, p, n):
+ """Calculates r = a^p mod n
+ """
+ result = a % n
+ remainders = []
+ while p != 1:
+ remainders.append(p & 1)
+ p = p >> 1
+ while remainders:
+ rem = remainders.pop()
+ result = ((a ** rem) * result ** 2) % n
+ return result
+
+def read_random_int(nbits):
+ """Reads a random integer of approximately nbits bits rounded up
+ to whole bytes"""
+
+ nbytes = ceil(nbits/8.)
+ randomdata = os.urandom(nbytes)
+ return bytes2int(randomdata)
+
+def ceil(x):
+ """ceil(x) -> int(math.ceil(x))"""
+
+ return int(math.ceil(x))
+
+def randint(minvalue, maxvalue):
+ """Returns a random integer x with minvalue <= x <= maxvalue"""
+
+ # Safety - get a lot of random data even if the range is fairly
+ # small
+ min_nbits = 32
+
+ # The range of the random numbers we need to generate
+ range = maxvalue - minvalue
+
+ # Which is this number of bytes
+ rangebytes = ceil(math.log(range, 2) / 8.)
+
+ # Convert to bits, but make sure it's always at least min_nbits*2
+ rangebits = max(rangebytes * 8, min_nbits * 2)
+
+ # Take a random number of bits between min_nbits and rangebits
+ nbits = random.randint(min_nbits, rangebits)
+
+ return (read_random_int(nbits) % range) + minvalue
+
+def fermat_little_theorem(p):
+ """Returns 1 if p may be prime, and something else if p definitely
+ is not prime"""
+
+ a = randint(1, p-1)
+ return fast_exponentiation(a, p-1, p)
+
+def jacobi(a, b):
+ """Calculates the value of the Jacobi symbol (a/b)
+ """
+
+ if a % b == 0:
+ return 0
+ result = 1
+ while a > 1:
+ if a & 1:
+ if ((a-1)*(b-1) >> 2) & 1:
+ result = -result
+ b, a = a, b % a
+ else:
+ if ((b ** 2 - 1) >> 3) & 1:
+ result = -result
+ a = a >> 1
+ return result
+
+def jacobi_witness(x, n):
+ """Returns False if n is an Euler pseudo-prime with base x, and
+ True otherwise.
+ """
+
+ j = jacobi(x, n) % n
+ f = fast_exponentiation(x, (n-1)/2, n)
+
+ if j == f: return False
+ return True
+
+def randomized_primality_testing(n, k):
+ """Calculates whether n is composite (which is always correct) or
+ prime (which is incorrect with error probability 2**-k)
+
+ Returns False if the number if composite, and True if it's
+ probably prime.
+ """
+
+ q = 0.5 # Property of the jacobi_witness function
+
+ # t = int(math.ceil(k / math.log(1/q, 2)))
+ t = ceil(k / math.log(1/q, 2))
+ for i in range(t+1):
+ x = randint(1, n-1)
+ if jacobi_witness(x, n): return False
+
+ return True
+
+def is_prime(number):
+ """Returns True if the number is prime, and False otherwise.
+
+ >>> is_prime(42)
+ 0
+ >>> is_prime(41)
+ 1
+ """
+
+ """
+ if not fermat_little_theorem(number) == 1:
+ # Not prime, according to Fermat's little theorem
+ return False
+ """
+
+ if randomized_primality_testing(number, 5):
+ # Prime, according to Jacobi
+ return True
+
+ # Not prime
+ return False
+
+
+def getprime(nbits):
+ """Returns a prime number of max. 'math.ceil(nbits/8)*8' bits. In
+ other words: nbits is rounded up to whole bytes.
+
+ >>> p = getprime(8)
+ >>> is_prime(p-1)
+ 0
+ >>> is_prime(p)
+ 1
+ >>> is_prime(p+1)
+ 0
+ """
+
+ nbytes = int(math.ceil(nbits/8.))
+
+ while True:
+ integer = read_random_int(nbits)
+
+ # Make sure it's odd
+ integer |= 1
+
+ # Test for primeness
+ if is_prime(integer): break
+
+ # Retry if not prime
+
+ return integer
+
+def are_relatively_prime(a, b):
+ """Returns True if a and b are relatively prime, and False if they
+ are not.
+
+ >>> are_relatively_prime(2, 3)
+ 1
+ >>> are_relatively_prime(2, 4)
+ 0
+ """
+
+ d = gcd(a, b)
+ return (d == 1)
+
+def find_p_q(nbits):
+ """Returns a tuple of two different primes of nbits bits"""
+
+ p = getprime(nbits)
+ while True:
+ q = getprime(nbits)
+ if not q == p: break
+
+ return (p, q)
+
+def extended_euclid_gcd(a, b):
+ """Returns a tuple (d, i, j) such that d = gcd(a, b) = ia + jb
+ """
+
+ if b == 0:
+ return (a, 1, 0)
+
+ q = abs(a % b)
+ r = long(a / b)
+ (d, k, l) = extended_euclid_gcd(b, q)
+
+ return (d, l, k - l*r)
+
+# Main function: calculate encryption and decryption keys
+def calculate_keys(p, q, nbits):
+ """Calculates an encryption and a decryption key for p and q, and
+ returns them as a tuple (e, d)"""
+
+ n = p * q
+ phi_n = (p-1) * (q-1)
+
+ while True:
+ # Make sure e has enough bits so we ensure "wrapping" through
+ # modulo n
+ e = getprime(max(8, nbits/2))
+ if are_relatively_prime(e, n) and are_relatively_prime(e, phi_n): break
+
+ (d, i, j) = extended_euclid_gcd(e, phi_n)
+
+ if not d == 1:
+ raise Exception("e (%d) and phi_n (%d) are not relatively prime" % (e, phi_n))
+
+ if not (e * i) % phi_n == 1:
+ raise Exception("e (%d) and i (%d) are not mult. inv. modulo phi_n (%d)" % (e, i, phi_n))
+
+ return (e, i)
+
+
+def gen_keys(nbits):
+ """Generate RSA keys of nbits bits. Returns (p, q, e, d).
+
+ Note: this can take a long time, depending on the key size.
+ """
+
+ while True:
+ (p, q) = find_p_q(nbits)
+ (e, d) = calculate_keys(p, q, nbits)
+
+ # For some reason, d is sometimes negative. We don't know how
+ # to fix it (yet), so we keep trying until everything is shiny
+ if d > 0: break
+
+ return (p, q, e, d)
+
+def gen_pubpriv_keys(nbits):
+ """Generates public and private keys, and returns them as (pub,
+ priv).
+
+ The public key consists of a dict {e: ..., , n: ....). The private
+ key consists of a dict {d: ...., p: ...., q: ....).
+ """
+
+ (p, q, e, d) = gen_keys(nbits)
+
+ return ( {'e': e, 'n': p*q}, {'d': d, 'p': p, 'q': q} )
+
+def encrypt_int(message, ekey, n):
+ """Encrypts a message using encryption key 'ekey', working modulo
+ n"""
+
+ if type(message) is types.IntType:
+ return encrypt_int(long(message), ekey, n)
+
+ if not type(message) is types.LongType:
+ raise TypeError("You must pass a long or an int")
+
+ if message > 0 and \
+ math.floor(math.log(message, 2)) > math.floor(math.log(n, 2)):
+ raise OverflowError("The message is too long")
+
+ return fast_exponentiation(message, ekey, n)
+
+def decrypt_int(cyphertext, dkey, n):
+ """Decrypts a cypher text using the decryption key 'dkey', working
+ modulo n"""
+
+ return encrypt_int(cyphertext, dkey, n)
+
+def sign_int(message, dkey, n):
+ """Signs 'message' using key 'dkey', working modulo n"""
+
+ return decrypt_int(message, dkey, n)
+
+def verify_int(signed, ekey, n):
+ """verifies 'signed' using key 'ekey', working modulo n"""
+
+ return encrypt_int(signed, ekey, n)
+
+def picklechops(chops):
+ """Pickles and base64encodes it's argument chops"""
+
+ value = zlib.compress(dumps(chops))
+ encoded = base64.encodestring(value)
+ return encoded.strip()
+
+def unpicklechops(string):
+ """base64decodes and unpickes it's argument string into chops"""
+
+ return loads(zlib.decompress(base64.decodestring(string)))
+
+def chopstring(message, key, n, funcref):
+ """Splits 'message' into chops that are at most as long as n,
+ converts these into integers, and calls funcref(integer, key, n)
+ for each chop.
+
+ Used by 'encrypt' and 'sign'.
+ """
+
+ msglen = len(message)
+ mbits = msglen * 8
+ nbits = int(math.floor(math.log(n, 2)))
+ nbytes = nbits / 8
+ blocks = msglen / nbytes
+
+ if msglen % nbytes > 0:
+ blocks += 1
+
+ cypher = []
+
+ for bindex in range(blocks):
+ offset = bindex * nbytes
+ block = message[offset:offset+nbytes]
+ value = bytes2int(block)
+ cypher.append(funcref(value, key, n))
+
+ return picklechops(cypher)
+
+def gluechops(chops, key, n, funcref):
+ """Glues chops back together into a string. calls
+ funcref(integer, key, n) for each chop.
+
+ Used by 'decrypt' and 'verify'.
+ """
+ message = ""
+
+ chops = unpicklechops(chops)
+
+ for cpart in chops:
+ mpart = funcref(cpart, key, n)
+ message += int2bytes(mpart)
+
+ return message
+
+def encrypt(message, key):
+ """Encrypts a string 'message' with the public key 'key'"""
+
+ return chopstring(message, key['e'], key['n'], encrypt_int)
+
+def sign(message, key):
+ """Signs a string 'message' with the private key 'key'"""
+
+ return chopstring(message, key['d'], key['p']*key['q'], decrypt_int)
+
+def decrypt(cypher, key):
+ """Decrypts a cypher with the private key 'key'"""
+
+ return gluechops(cypher, key['d'], key['p']*key['q'], decrypt_int)
+
+def verify(cypher, key):
+ """Verifies a cypher with the public key 'key'"""
+
+ return gluechops(cypher, key['e'], key['n'], encrypt_int)
+
+# Do doctest if we're not imported
+if __name__ == "__main__":
+ import doctest
+ doctest.testmod()
+
+__all__ = ["gen_pubpriv_keys", "encrypt", "decrypt", "sign", "verify"]
+
--- /dev/null
+"""RSA module
+
+Module for calculating large primes, and RSA encryption, decryption,
+signing and verification. Includes generating public and private keys.
+
+WARNING: this implementation does not use random padding, compression of the
+cleartext input to prevent repetitions, or other common security improvements.
+Use with care.
+
+"""
+
+__author__ = "Sybren Stuvel, Marloes de Boer, Ivo Tamboer, and Barry Mead"
+__date__ = "2010-02-08"
+__version__ = '2.0'
+
+import math
+import os
+import random
+import sys
+import types
+
+# Display a warning that this insecure version is imported.
+import warnings
+warnings.warn('Insecure version of the RSA module is imported as %s' % __name__)
+
+
+def bit_size(number):
+ """Returns the number of bits required to hold a specific long number"""
+
+ return int(math.ceil(math.log(number,2)))
+
+def gcd(p, q):
+ """Returns the greatest common divisor of p and q
+ >>> gcd(48, 180)
+ 12
+ """
+ # Iterateive Version is faster and uses much less stack space
+ while q != 0:
+ if p < q: (p,q) = (q,p)
+ (p,q) = (q, p % q)
+ return p
+
+
+def bytes2int(bytes):
+ """Converts a list of bytes or a string to an integer
+
+ >>> (((128 * 256) + 64) * 256) + 15
+ 8405007
+ >>> l = [128, 64, 15]
+ >>> bytes2int(l) #same as bytes2int('\x80@\x0f')
+ 8405007
+ """
+
+ if not (type(bytes) is types.ListType or type(bytes) is types.StringType):
+ raise TypeError("You must pass a string or a list")
+
+ # Convert byte stream to integer
+ integer = 0
+ for byte in bytes:
+ integer *= 256
+ if type(byte) is types.StringType: byte = ord(byte)
+ integer += byte
+
+ return integer
+
+def int2bytes(number):
+ """Converts a number to a string of bytes
+
+ >>>int2bytes(123456789)
+ '\x07[\xcd\x15'
+ >>> bytes2int(int2bytes(123456789))
+ 123456789
+ """
+
+ if not (type(number) is types.LongType or type(number) is types.IntType):
+ raise TypeError("You must pass a long or an int")
+
+ string = ""
+
+ while number > 0:
+ string = "%s%s" % (chr(number & 0xFF), string)
+ number /= 256
+
+ return string
+
+def to64(number):
+ """Converts a number in the range of 0 to 63 into base 64 digit
+ character in the range of '0'-'9', 'A'-'Z', 'a'-'z','-','_'.
+
+ >>> to64(10)
+ 'A'
+ """
+
+ if not (type(number) is types.LongType or type(number) is types.IntType):
+ raise TypeError("You must pass a long or an int")
+
+ if 0 <= number <= 9: #00-09 translates to '0' - '9'
+ return chr(number + 48)
+
+ if 10 <= number <= 35:
+ return chr(number + 55) #10-35 translates to 'A' - 'Z'
+
+ if 36 <= number <= 61:
+ return chr(number + 61) #36-61 translates to 'a' - 'z'
+
+ if number == 62: # 62 translates to '-' (minus)
+ return chr(45)
+
+ if number == 63: # 63 translates to '_' (underscore)
+ return chr(95)
+
+ raise ValueError(u'Invalid Base64 value: %i' % number)
+
+
+def from64(number):
+ """Converts an ordinal character value in the range of
+ 0-9,A-Z,a-z,-,_ to a number in the range of 0-63.
+
+ >>> from64(49)
+ 1
+ """
+
+ if not (type(number) is types.LongType or type(number) is types.IntType):
+ raise TypeError("You must pass a long or an int")
+
+ if 48 <= number <= 57: #ord('0') - ord('9') translates to 0-9
+ return(number - 48)
+
+ if 65 <= number <= 90: #ord('A') - ord('Z') translates to 10-35
+ return(number - 55)
+
+ if 97 <= number <= 122: #ord('a') - ord('z') translates to 36-61
+ return(number - 61)
+
+ if number == 45: #ord('-') translates to 62
+ return(62)
+
+ if number == 95: #ord('_') translates to 63
+ return(63)
+
+ raise ValueError(u'Invalid Base64 value: %i' % number)
+
+
+def int2str64(number):
+ """Converts a number to a string of base64 encoded characters in
+ the range of '0'-'9','A'-'Z,'a'-'z','-','_'.
+
+ >>> int2str64(123456789)
+ '7MyqL'
+ """
+
+ if not (type(number) is types.LongType or type(number) is types.IntType):
+ raise TypeError("You must pass a long or an int")
+
+ string = ""
+
+ while number > 0:
+ string = "%s%s" % (to64(number & 0x3F), string)
+ number /= 64
+
+ return string
+
+
+def str642int(string):
+ """Converts a base64 encoded string into an integer.
+ The chars of this string in in the range '0'-'9','A'-'Z','a'-'z','-','_'
+
+ >>> str642int('7MyqL')
+ 123456789
+ """
+
+ if not (type(string) is types.ListType or type(string) is types.StringType):
+ raise TypeError("You must pass a string or a list")
+
+ integer = 0
+ for byte in string:
+ integer *= 64
+ if type(byte) is types.StringType: byte = ord(byte)
+ integer += from64(byte)
+
+ return integer
+
+def read_random_int(nbits):
+ """Reads a random integer of approximately nbits bits rounded up
+ to whole bytes"""
+
+ nbytes = int(math.ceil(nbits/8.))
+ randomdata = os.urandom(nbytes)
+ return bytes2int(randomdata)
+
+def randint(minvalue, maxvalue):
+ """Returns a random integer x with minvalue <= x <= maxvalue"""
+
+ # Safety - get a lot of random data even if the range is fairly
+ # small
+ min_nbits = 32
+
+ # The range of the random numbers we need to generate
+ range = (maxvalue - minvalue) + 1
+
+ # Which is this number of bytes
+ rangebytes = ((bit_size(range) + 7) / 8)
+
+ # Convert to bits, but make sure it's always at least min_nbits*2
+ rangebits = max(rangebytes * 8, min_nbits * 2)
+
+ # Take a random number of bits between min_nbits and rangebits
+ nbits = random.randint(min_nbits, rangebits)
+
+ return (read_random_int(nbits) % range) + minvalue
+
+def jacobi(a, b):
+ """Calculates the value of the Jacobi symbol (a/b)
+ where both a and b are positive integers, and b is odd
+ """
+
+ if a == 0: return 0
+ result = 1
+ while a > 1:
+ if a & 1:
+ if ((a-1)*(b-1) >> 2) & 1:
+ result = -result
+ a, b = b % a, a
+ else:
+ if (((b * b) - 1) >> 3) & 1:
+ result = -result
+ a >>= 1
+ if a == 0: return 0
+ return result
+
+def jacobi_witness(x, n):
+ """Returns False if n is an Euler pseudo-prime with base x, and
+ True otherwise.
+ """
+
+ j = jacobi(x, n) % n
+ f = pow(x, (n-1)/2, n)
+
+ if j == f: return False
+ return True
+
+def randomized_primality_testing(n, k):
+ """Calculates whether n is composite (which is always correct) or
+ prime (which is incorrect with error probability 2**-k)
+
+ Returns False if the number is composite, and True if it's
+ probably prime.
+ """
+
+ # 50% of Jacobi-witnesses can report compositness of non-prime numbers
+
+ for i in range(k):
+ x = randint(1, n-1)
+ if jacobi_witness(x, n): return False
+
+ return True
+
+def is_prime(number):
+ """Returns True if the number is prime, and False otherwise.
+
+ >>> is_prime(42)
+ 0
+ >>> is_prime(41)
+ 1
+ """
+
+ if randomized_primality_testing(number, 6):
+ # Prime, according to Jacobi
+ return True
+
+ # Not prime
+ return False
+
+
+def getprime(nbits):
+ """Returns a prime number of max. 'math.ceil(nbits/8)*8' bits. In
+ other words: nbits is rounded up to whole bytes.
+
+ >>> p = getprime(8)
+ >>> is_prime(p-1)
+ 0
+ >>> is_prime(p)
+ 1
+ >>> is_prime(p+1)
+ 0
+ """
+
+ while True:
+ integer = read_random_int(nbits)
+
+ # Make sure it's odd
+ integer |= 1
+
+ # Test for primeness
+ if is_prime(integer): break
+
+ # Retry if not prime
+
+ return integer
+
+def are_relatively_prime(a, b):
+ """Returns True if a and b are relatively prime, and False if they
+ are not.
+
+ >>> are_relatively_prime(2, 3)
+ 1
+ >>> are_relatively_prime(2, 4)
+ 0
+ """
+
+ d = gcd(a, b)
+ return (d == 1)
+
+def find_p_q(nbits):
+ """Returns a tuple of two different primes of nbits bits"""
+ pbits = nbits + (nbits/16) #Make sure that p and q aren't too close
+ qbits = nbits - (nbits/16) #or the factoring programs can factor n
+ p = getprime(pbits)
+ while True:
+ q = getprime(qbits)
+ #Make sure p and q are different.
+ if not q == p: break
+ return (p, q)
+
+def extended_gcd(a, b):
+ """Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
+ """
+ # r = gcd(a,b) i = multiplicitive inverse of a mod b
+ # or j = multiplicitive inverse of b mod a
+ # Neg return values for i or j are made positive mod b or a respectively
+ # Iterateive Version is faster and uses much less stack space
+ x = 0
+ y = 1
+ lx = 1
+ ly = 0
+ oa = a #Remember original a/b to remove
+ ob = b #negative values from return results
+ while b != 0:
+ q = long(a/b)
+ (a, b) = (b, a % b)
+ (x, lx) = ((lx - (q * x)),x)
+ (y, ly) = ((ly - (q * y)),y)
+ if (lx < 0): lx += ob #If neg wrap modulo orignal b
+ if (ly < 0): ly += oa #If neg wrap modulo orignal a
+ return (a, lx, ly) #Return only positive values
+
+# Main function: calculate encryption and decryption keys
+def calculate_keys(p, q, nbits):
+ """Calculates an encryption and a decryption key for p and q, and
+ returns them as a tuple (e, d)"""
+
+ n = p * q
+ phi_n = (p-1) * (q-1)
+
+ while True:
+ # Make sure e has enough bits so we ensure "wrapping" through
+ # modulo n
+ e = max(65537,getprime(nbits/4))
+ if are_relatively_prime(e, n) and are_relatively_prime(e, phi_n): break
+
+ (d, i, j) = extended_gcd(e, phi_n)
+
+ if not d == 1:
+ raise Exception("e (%d) and phi_n (%d) are not relatively prime" % (e, phi_n))
+ if (i < 0):
+ raise Exception("New extended_gcd shouldn't return negative values")
+ if not (e * i) % phi_n == 1:
+ raise Exception("e (%d) and i (%d) are not mult. inv. modulo phi_n (%d)" % (e, i, phi_n))
+
+ return (e, i)
+
+
+def gen_keys(nbits):
+ """Generate RSA keys of nbits bits. Returns (p, q, e, d).
+
+ Note: this can take a long time, depending on the key size.
+ """
+
+ (p, q) = find_p_q(nbits)
+ (e, d) = calculate_keys(p, q, nbits)
+
+ return (p, q, e, d)
+
+def newkeys(nbits):
+ """Generates public and private keys, and returns them as (pub,
+ priv).
+
+ The public key consists of a dict {e: ..., , n: ....). The private
+ key consists of a dict {d: ...., p: ...., q: ....).
+ """
+ nbits = max(9,nbits) # Don't let nbits go below 9 bits
+ (p, q, e, d) = gen_keys(nbits)
+
+ return ( {'e': e, 'n': p*q}, {'d': d, 'p': p, 'q': q} )
+
+def encrypt_int(message, ekey, n):
+ """Encrypts a message using encryption key 'ekey', working modulo n"""
+
+ if type(message) is types.IntType:
+ message = long(message)
+
+ if not type(message) is types.LongType:
+ raise TypeError("You must pass a long or int")
+
+ if message < 0 or message > n:
+ raise OverflowError("The message is too long")
+
+ #Note: Bit exponents start at zero (bit counts start at 1) this is correct
+ safebit = bit_size(n) - 2 #compute safe bit (MSB - 1)
+ message += (1 << safebit) #add safebit to ensure folding
+
+ return pow(message, ekey, n)
+
+def decrypt_int(cyphertext, dkey, n):
+ """Decrypts a cypher text using the decryption key 'dkey', working
+ modulo n"""
+
+ message = pow(cyphertext, dkey, n)
+
+ safebit = bit_size(n) - 2 #compute safe bit (MSB - 1)
+ message -= (1 << safebit) #remove safebit before decode
+
+ return message
+
+def encode64chops(chops):
+ """base64encodes chops and combines them into a ',' delimited string"""
+
+ chips = [] #chips are character chops
+
+ for value in chops:
+ chips.append(int2str64(value))
+
+ #delimit chops with comma
+ encoded = ','.join(chips)
+
+ return encoded
+
+def decode64chops(string):
+ """base64decodes and makes a ',' delimited string into chops"""
+
+ chips = string.split(',') #split chops at commas
+
+ chops = []
+
+ for string in chips: #make char chops (chips) into chops
+ chops.append(str642int(string))
+
+ return chops
+
+def chopstring(message, key, n, funcref):
+ """Chops the 'message' into integers that fit into n,
+ leaving room for a safebit to be added to ensure that all
+ messages fold during exponentiation. The MSB of the number n
+ is not independant modulo n (setting it could cause overflow), so
+ use the next lower bit for the safebit. Therefore reserve 2-bits
+ in the number n for non-data bits. Calls specified encryption
+ function for each chop.
+
+ Used by 'encrypt' and 'sign'.
+ """
+
+ msglen = len(message)
+ mbits = msglen * 8
+ #Set aside 2-bits so setting of safebit won't overflow modulo n.
+ nbits = bit_size(n) - 2 # leave room for safebit
+ nbytes = nbits / 8
+ blocks = msglen / nbytes
+
+ if msglen % nbytes > 0:
+ blocks += 1
+
+ cypher = []
+
+ for bindex in range(blocks):
+ offset = bindex * nbytes
+ block = message[offset:offset+nbytes]
+ value = bytes2int(block)
+ cypher.append(funcref(value, key, n))
+
+ return encode64chops(cypher) #Encode encrypted ints to base64 strings
+
+def gluechops(string, key, n, funcref):
+ """Glues chops back together into a string. calls
+ funcref(integer, key, n) for each chop.
+
+ Used by 'decrypt' and 'verify'.
+ """
+ message = ""
+
+ chops = decode64chops(string) #Decode base64 strings into integer chops
+
+ for cpart in chops:
+ mpart = funcref(cpart, key, n) #Decrypt each chop
+ message += int2bytes(mpart) #Combine decrypted strings into a msg
+
+ return message
+
+def encrypt(message, key):
+ """Encrypts a string 'message' with the public key 'key'"""
+ if 'n' not in key:
+ raise Exception("You must use the public key with encrypt")
+
+ return chopstring(message, key['e'], key['n'], encrypt_int)
+
+def sign(message, key):
+ """Signs a string 'message' with the private key 'key'"""
+ if 'p' not in key:
+ raise Exception("You must use the private key with sign")
+
+ return chopstring(message, key['d'], key['p']*key['q'], encrypt_int)
+
+def decrypt(cypher, key):
+ """Decrypts a string 'cypher' with the private key 'key'"""
+ if 'p' not in key:
+ raise Exception("You must use the private key with decrypt")
+
+ return gluechops(cypher, key['d'], key['p']*key['q'], decrypt_int)
+
+def verify(cypher, key):
+ """Verifies a string 'cypher' with the public key 'key'"""
+ if 'n' not in key:
+ raise Exception("You must use the public key with verify")
+
+ return gluechops(cypher, key['e'], key['n'], decrypt_int)
+
+# Do doctest if we're not imported
+if __name__ == "__main__":
+ import doctest
+ doctest.testmod()
+
+__all__ = ["newkeys", "encrypt", "decrypt", "sign", "verify"]
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+'''Large file support
+
+ - break a file into smaller blocks, and encrypt them, and store the
+ encrypted blocks in another file.
+
+ - take such an encrypted files, decrypt its blocks, and reconstruct the
+ original file.
+
+The encrypted file format is as follows, where || denotes byte concatenation:
+
+ FILE := VERSION || BLOCK || BLOCK ...
+
+ BLOCK := LENGTH || DATA
+
+ LENGTH := varint-encoded length of the subsequent data. Varint comes from
+ Google Protobuf, and encodes an integer into a variable number of bytes.
+ Each byte uses the 7 lowest bits to encode the value. The highest bit set
+ to 1 indicates the next byte is also part of the varint. The last byte will
+ have this bit set to 0.
+
+This file format is called the VARBLOCK format, in line with the varint format
+used to denote the block sizes.
+
+'''
+
+from rsa import key, common, pkcs1, varblock
+
+def encrypt_bigfile(infile, outfile, pub_key):
+ '''Encrypts a file, writing it to 'outfile' in VARBLOCK format.
+
+ :param infile: file-like object to read the cleartext from
+ :param outfile: file-like object to write the crypto in VARBLOCK format to
+ :param pub_key: :py:class:`rsa.PublicKey` to encrypt with
+
+ '''
+
+ if not isinstance(pub_key, key.PublicKey):
+ raise TypeError('Public key required, but got %r' % pub_key)
+
+ key_bytes = common.bit_size(pub_key.n) // 8
+ blocksize = key_bytes - 11 # keep space for PKCS#1 padding
+
+ # Write the version number to the VARBLOCK file
+ outfile.write(chr(varblock.VARBLOCK_VERSION))
+
+ # Encrypt and write each block
+ for block in varblock.yield_fixedblocks(infile, blocksize):
+ crypto = pkcs1.encrypt(block, pub_key)
+
+ varblock.write_varint(outfile, len(crypto))
+ outfile.write(crypto)
+
+def decrypt_bigfile(infile, outfile, priv_key):
+ '''Decrypts an encrypted VARBLOCK file, writing it to 'outfile'
+
+ :param infile: file-like object to read the crypto in VARBLOCK format from
+ :param outfile: file-like object to write the cleartext to
+ :param priv_key: :py:class:`rsa.PrivateKey` to decrypt with
+
+ '''
+
+ if not isinstance(priv_key, key.PrivateKey):
+ raise TypeError('Private key required, but got %r' % priv_key)
+
+ for block in varblock.yield_varblocks(infile):
+ cleartext = pkcs1.decrypt(block, priv_key)
+ outfile.write(cleartext)
+
+__all__ = ['encrypt_bigfile', 'decrypt_bigfile']
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''Commandline scripts.
+
+These scripts are called by the executables defined in setup.py.
+'''
+
+import abc
+import sys
+from optparse import OptionParser
+
+import rsa
+import rsa.bigfile
+import rsa.pkcs1
+
+HASH_METHODS = sorted(rsa.pkcs1.HASH_METHODS.keys())
+
+def keygen():
+ '''Key generator.'''
+
+ # Parse the CLI options
+ parser = OptionParser(usage='usage: %prog [options] keysize',
+ description='Generates a new RSA keypair of "keysize" bits.')
+
+ parser.add_option('--pubout', type='string',
+ help='Output filename for the public key. The public key is '
+ 'not saved if this option is not present. You can use '
+ 'pyrsa-priv2pub to create the public key file later.')
+
+ parser.add_option('-o', '--out', type='string',
+ help='Output filename for the private key. The key is '
+ 'written to stdout if this option is not present.')
+
+ parser.add_option('--form',
+ help='key format of the private and public keys - default PEM',
+ choices=('PEM', 'DER'), default='PEM')
+
+ (cli, cli_args) = parser.parse_args(sys.argv[1:])
+
+ if len(cli_args) != 1:
+ parser.print_help()
+ raise SystemExit(1)
+
+ try:
+ keysize = int(cli_args[0])
+ except ValueError:
+ parser.print_help()
+ print >>sys.stderr, 'Not a valid number: %s' % cli_args[0]
+ raise SystemExit(1)
+
+ print >>sys.stderr, 'Generating %i-bit key' % keysize
+ (pub_key, priv_key) = rsa.newkeys(keysize)
+
+
+ # Save public key
+ if cli.pubout:
+ print >>sys.stderr, 'Writing public key to %s' % cli.pubout
+ data = pub_key.save_pkcs1(format=cli.form)
+ with open(cli.pubout, 'w') as outfile:
+ outfile.write(data)
+
+ # Save private key
+ data = priv_key.save_pkcs1(format=cli.form)
+
+ if cli.out:
+ print >>sys.stderr, 'Writing private key to %s' % cli.out
+ with open(cli.out, 'w') as outfile:
+ outfile.write(data)
+ else:
+ print >>sys.stderr, 'Writing private key to stdout'
+ sys.stdout.write(data)
+
+
+class CryptoOperation(object):
+ '''CLI callable that operates with input, output, and a key.'''
+
+ __metaclass__ = abc.ABCMeta
+
+ keyname = 'public' # or 'private'
+ usage = 'usage: %%prog [options] %(keyname)s_key'
+ description = None
+ operation = 'decrypt'
+ operation_past = 'decrypted'
+ operation_progressive = 'decrypting'
+ input_help = 'Name of the file to %(operation)s. Reads from stdin if ' \
+ 'not specified.'
+ output_help = 'Name of the file to write the %(operation_past)s file ' \
+ 'to. Written to stdout if this option is not present.'
+ expected_cli_args = 1
+ has_output = True
+
+ key_class = rsa.PublicKey
+
+ def __init__(self):
+ self.usage = self.usage % self.__class__.__dict__
+ self.input_help = self.input_help % self.__class__.__dict__
+ self.output_help = self.output_help % self.__class__.__dict__
+
+ @abc.abstractmethod
+ def perform_operation(self, indata, key, cli_args=None):
+ '''Performs the program's operation.
+
+ Implement in a subclass.
+
+ :returns: the data to write to the output.
+ '''
+
+ def __call__(self):
+ '''Runs the program.'''
+
+ (cli, cli_args) = self.parse_cli()
+
+ key = self.read_key(cli_args[0], cli.keyform)
+
+ indata = self.read_infile(cli.input)
+
+ print >>sys.stderr, self.operation_progressive.title()
+ outdata = self.perform_operation(indata, key, cli_args)
+
+ if self.has_output:
+ self.write_outfile(outdata, cli.output)
+
+ def parse_cli(self):
+ '''Parse the CLI options
+
+ :returns: (cli_opts, cli_args)
+ '''
+
+ parser = OptionParser(usage=self.usage, description=self.description)
+
+ parser.add_option('-i', '--input', type='string', help=self.input_help)
+
+ if self.has_output:
+ parser.add_option('-o', '--output', type='string', help=self.output_help)
+
+ parser.add_option('--keyform',
+ help='Key format of the %s key - default PEM' % self.keyname,
+ choices=('PEM', 'DER'), default='PEM')
+
+ (cli, cli_args) = parser.parse_args(sys.argv[1:])
+
+ if len(cli_args) != self.expected_cli_args:
+ parser.print_help()
+ raise SystemExit(1)
+
+ return (cli, cli_args)
+
+ def read_key(self, filename, keyform):
+ '''Reads a public or private key.'''
+
+ print >>sys.stderr, 'Reading %s key from %s' % (self.keyname, filename)
+ with open(filename) as keyfile:
+ keydata = keyfile.read()
+
+ return self.key_class.load_pkcs1(keydata, keyform)
+
+ def read_infile(self, inname):
+ '''Read the input file'''
+
+ if inname:
+ print >>sys.stderr, 'Reading input from %s' % inname
+ with open(inname, 'rb') as infile:
+ return infile.read()
+
+ print >>sys.stderr, 'Reading input from stdin'
+ return sys.stdin.read()
+
+ def write_outfile(self, outdata, outname):
+ '''Write the output file'''
+
+ if outname:
+ print >>sys.stderr, 'Writing output to %s' % outname
+ with open(outname, 'wb') as outfile:
+ outfile.write(outdata)
+ else:
+ print >>sys.stderr, 'Writing output to stdout'
+ sys.stdout.write(outdata)
+
+class EncryptOperation(CryptoOperation):
+ '''Encrypts a file.'''
+
+ keyname = 'public'
+ description = ('Encrypts a file. The file must be shorter than the key '
+ 'length in order to be encrypted. For larger files, use the '
+ 'pyrsa-encrypt-bigfile command.')
+ operation = 'encrypt'
+ operation_past = 'encrypted'
+ operation_progressive = 'encrypting'
+
+
+ def perform_operation(self, indata, pub_key, cli_args=None):
+ '''Encrypts files.'''
+
+ return rsa.encrypt(indata, pub_key)
+
+class DecryptOperation(CryptoOperation):
+ '''Decrypts a file.'''
+
+ keyname = 'private'
+ description = ('Decrypts a file. The original file must be shorter than '
+ 'the key length in order to have been encrypted. For larger '
+ 'files, use the pyrsa-decrypt-bigfile command.')
+ operation = 'decrypt'
+ operation_past = 'decrypted'
+ operation_progressive = 'decrypting'
+ key_class = rsa.PrivateKey
+
+ def perform_operation(self, indata, priv_key, cli_args=None):
+ '''Decrypts files.'''
+
+ return rsa.decrypt(indata, priv_key)
+
+class SignOperation(CryptoOperation):
+ '''Signs a file.'''
+
+ keyname = 'private'
+ usage = 'usage: %%prog [options] private_key hash_method'
+ description = ('Signs a file, outputs the signature. Choose the hash '
+ 'method from %s' % ', '.join(HASH_METHODS))
+ operation = 'sign'
+ operation_past = 'signature'
+ operation_progressive = 'Signing'
+ key_class = rsa.PrivateKey
+ expected_cli_args = 2
+
+ output_help = ('Name of the file to write the signature to. Written '
+ 'to stdout if this option is not present.')
+
+ def perform_operation(self, indata, priv_key, cli_args):
+ '''Decrypts files.'''
+
+ hash_method = cli_args[1]
+ if hash_method not in HASH_METHODS:
+ raise SystemExit('Invalid hash method, choose one of %s' %
+ ', '.join(HASH_METHODS))
+
+ return rsa.sign(indata, priv_key, hash_method)
+
+class VerifyOperation(CryptoOperation):
+ '''Verify a signature.'''
+
+ keyname = 'public'
+ usage = 'usage: %%prog [options] private_key signature_file'
+ description = ('Verifies a signature, exits with status 0 upon success, '
+ 'prints an error message and exits with status 1 upon error.')
+ operation = 'verify'
+ operation_past = 'verified'
+ operation_progressive = 'Verifying'
+ key_class = rsa.PublicKey
+ expected_cli_args = 2
+ has_output = False
+
+ def perform_operation(self, indata, pub_key, cli_args):
+ '''Decrypts files.'''
+
+ signature_file = cli_args[1]
+
+ with open(signature_file, 'rb') as sigfile:
+ signature = sigfile.read()
+
+ try:
+ rsa.verify(indata, signature, pub_key)
+ except rsa.VerificationError:
+ raise SystemExit('Verification failed.')
+
+ print >>sys.stderr, 'Verification OK'
+
+
+class BigfileOperation(CryptoOperation):
+ '''CryptoOperation that doesn't read the entire file into memory.'''
+
+ def __init__(self):
+ CryptoOperation.__init__(self)
+
+ self.file_objects = []
+
+ def __del__(self):
+ '''Closes any open file handles.'''
+
+ for fobj in self.file_objects:
+ fobj.close()
+
+ def __call__(self):
+ '''Runs the program.'''
+
+ (cli, cli_args) = self.parse_cli()
+
+ key = self.read_key(cli_args[0], cli.keyform)
+
+ # Get the file handles
+ infile = self.get_infile(cli.input)
+ outfile = self.get_outfile(cli.output)
+
+ # Call the operation
+ print >>sys.stderr, self.operation_progressive.title()
+ self.perform_operation(infile, outfile, key, cli_args)
+
+ def get_infile(self, inname):
+ '''Returns the input file object'''
+
+ if inname:
+ print >>sys.stderr, 'Reading input from %s' % inname
+ fobj = open(inname, 'rb')
+ self.file_objects.append(fobj)
+ else:
+ print >>sys.stderr, 'Reading input from stdin'
+ fobj = sys.stdin
+
+ return fobj
+
+ def get_outfile(self, outname):
+ '''Returns the output file object'''
+
+ if outname:
+ print >>sys.stderr, 'Will write output to %s' % outname
+ fobj = open(outname, 'wb')
+ self.file_objects.append(fobj)
+ else:
+ print >>sys.stderr, 'Will write output to stdout'
+ fobj = sys.stdout
+
+ return fobj
+
+class EncryptBigfileOperation(BigfileOperation):
+ '''Encrypts a file to VARBLOCK format.'''
+
+ keyname = 'public'
+ description = ('Encrypts a file to an encrypted VARBLOCK file. The file '
+ 'can be larger than the key length, but the output file is only '
+ 'compatible with Python-RSA.')
+ operation = 'encrypt'
+ operation_past = 'encrypted'
+ operation_progressive = 'encrypting'
+
+ def perform_operation(self, infile, outfile, pub_key, cli_args=None):
+ '''Encrypts files to VARBLOCK.'''
+
+ return rsa.bigfile.encrypt_bigfile(infile, outfile, pub_key)
+
+class DecryptBigfileOperation(BigfileOperation):
+ '''Decrypts a file in VARBLOCK format.'''
+
+ keyname = 'private'
+ description = ('Decrypts an encrypted VARBLOCK file that was encrypted '
+ 'with pyrsa-encrypt-bigfile')
+ operation = 'decrypt'
+ operation_past = 'decrypted'
+ operation_progressive = 'decrypting'
+ key_class = rsa.PrivateKey
+
+ def perform_operation(self, infile, outfile, priv_key, cli_args=None):
+ '''Decrypts a VARBLOCK file.'''
+
+ return rsa.bigfile.decrypt_bigfile(infile, outfile, priv_key)
+
+
+encrypt = EncryptOperation()
+decrypt = DecryptOperation()
+sign = SignOperation()
+verify = VerifyOperation()
+encrypt_bigfile = EncryptBigfileOperation()
+decrypt_bigfile = DecryptBigfileOperation()
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''Common functionality shared by several modules.'''
+
+
+import math
+
+def bit_size(number):
+ '''Returns the number of bits required to hold a specific long number.
+
+ >>> bit_size(1023)
+ 10
+ >>> bit_size(1024)
+ 11
+ >>> bit_size(1025)
+ 11
+
+ >>> bit_size(1 << 1024)
+ 1025
+ >>> bit_size((1 << 1024) + 1)
+ 1025
+ >>> bit_size((1 << 1024) - 1)
+ 1024
+
+ '''
+
+ if number < 0:
+ raise ValueError('Only nonnegative numbers possible: %s' % number)
+
+ if number == 0:
+ return 1
+
+ # This works, even with very large numbers. When using math.log(number, 2),
+ # you'll get rounding errors and it'll fail.
+ bits = 0
+ while number:
+ bits += 1
+ number >>= 1
+
+ return bits
+
+
+def byte_size(number):
+ """Returns the number of bytes required to hold a specific long number.
+
+ The number of bytes is rounded up.
+
+ >>> byte_size(1 << 1023)
+ 128
+ >>> byte_size((1 << 1024) - 1)
+ 128
+ >>> byte_size(1 << 1024)
+ 129
+ """
+
+ return int(math.ceil(bit_size(number) / 8.0))
+
+if __name__ == '__main__':
+ import doctest
+ doctest.testmod()
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+'''Core mathematical operations.
+
+This is the actual core RSA implementation, which is only defined
+mathematically on integers.
+'''
+
+import types
+
+def assert_int(var, name):
+
+ if type(var) in (types.IntType, types.LongType):
+ return
+
+ raise TypeError('%s should be an integer, not %s' % (name, var.__class__))
+
+def encrypt_int(message, ekey, n):
+ """Encrypts a message using encryption key 'ekey', working modulo n"""
+
+ assert_int(message, 'message')
+ assert_int(ekey, 'ekey')
+ assert_int(n, 'n')
+
+ if message < 0:
+ raise ValueError('Only non-negative numbers are supported')
+
+ if message > n:
+ raise OverflowError("The message %i is too long for n=%i" % (message, n))
+
+ return pow(message, ekey, n)
+
+def decrypt_int(cyphertext, dkey, n):
+ """Decrypts a cypher text using the decryption key 'dkey', working
+ modulo n"""
+
+ if type(cyphertext) not in (types.IntType, types.LongType):
+ raise TypeError('cyphertext should be an integer, not %s' %
+ cyphertext.__type__)
+
+ assert_int(cyphertext, 'cyphertext')
+ assert_int(dkey, 'dkey')
+ assert_int(n, 'n')
+
+ message = pow(cyphertext, dkey, n)
+ return message
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''RSA key generation code.
+
+Create new keys with the newkeys() function. It will give you a PublicKey and a
+PrivateKey object.
+
+Loading and saving keys requires the pyasn1 module. This module is imported as
+late as possible, such that other functionality will remain working in absence
+of pyasn1.
+
+'''
+
+import logging
+
+import rsa.prime
+import rsa.pem
+import rsa.common
+
+log = logging.getLogger(__name__)
+
+class AbstractKey(object):
+ '''Abstract superclass for private and public keys.'''
+
+ @classmethod
+ def load_pkcs1(cls, keyfile, format='PEM'):
+ r'''Loads a key in PKCS#1 DER or PEM format.
+
+ :param keyfile: contents of a DER- or PEM-encoded file that contains
+ the public key.
+ :param format: the format of the file to load; 'PEM' or 'DER'
+
+ :return: a PublicKey object
+
+ '''
+
+ methods = {
+ 'PEM': cls._load_pkcs1_pem,
+ 'DER': cls._load_pkcs1_der,
+ }
+
+ if format not in methods:
+ formats = ', '.join(sorted(methods.keys()))
+ raise ValueError('Unsupported format: %r, try one of %s' % (format,
+ formats))
+
+ method = methods[format]
+ return method(keyfile)
+
+ def save_pkcs1(self, format='PEM'):
+ '''Saves the public key in PKCS#1 DER or PEM format.
+
+ :param format: the format to save; 'PEM' or 'DER'
+ :returns: the DER- or PEM-encoded public key.
+
+ '''
+
+ methods = {
+ 'PEM': self._save_pkcs1_pem,
+ 'DER': self._save_pkcs1_der,
+ }
+
+ if format not in methods:
+ formats = ', '.join(sorted(methods.keys()))
+ raise ValueError('Unsupported format: %r, try one of %s' % (format,
+ formats))
+
+ method = methods[format]
+ return method()
+
+class PublicKey(AbstractKey):
+ '''Represents a public RSA key.
+
+ This key is also known as the 'encryption key'. It contains the 'n' and 'e'
+ values.
+
+ Supports attributes as well as dictionary-like access. Attribute accesss is
+ faster, though.
+
+ >>> PublicKey(5, 3)
+ PublicKey(5, 3)
+
+ >>> key = PublicKey(5, 3)
+ >>> key.n
+ 5
+ >>> key['n']
+ 5
+ >>> key.e
+ 3
+ >>> key['e']
+ 3
+
+ '''
+
+ __slots__ = ('n', 'e')
+
+ def __init__(self, n, e):
+ self.n = n
+ self.e = e
+
+ def __getitem__(self, key):
+ return getattr(self, key)
+
+ def __repr__(self):
+ return u'PublicKey(%i, %i)' % (self.n, self.e)
+
+ def __eq__(self, other):
+ if other is None:
+ return False
+
+ if not isinstance(other, PublicKey):
+ return False
+
+ return self.n == other.n and self.e == other.e
+
+ def __ne__(self, other):
+ return not (self == other)
+
+ @classmethod
+ def _load_pkcs1_der(cls, keyfile):
+ r'''Loads a key in PKCS#1 DER format.
+
+ @param keyfile: contents of a DER-encoded file that contains the public
+ key.
+ @return: a PublicKey object
+
+ First let's construct a DER encoded key:
+
+ >>> import base64
+ >>> b64der = 'MAwCBQCNGmYtAgMBAAE='
+ >>> der = base64.decodestring(b64der)
+
+ This loads the file:
+
+ >>> PublicKey._load_pkcs1_der(der)
+ PublicKey(2367317549, 65537)
+
+ '''
+
+ from pyasn1.codec.der import decoder
+ (priv, _) = decoder.decode(keyfile)
+
+ # ASN.1 contents of DER encoded public key:
+ #
+ # RSAPublicKey ::= SEQUENCE {
+ # modulus INTEGER, -- n
+ # publicExponent INTEGER, -- e
+
+ as_ints = tuple(int(x) for x in priv)
+ return cls(*as_ints)
+
+ def _save_pkcs1_der(self):
+ '''Saves the public key in PKCS#1 DER format.
+
+ @returns: the DER-encoded public key.
+ '''
+
+ from pyasn1.type import univ, namedtype
+ from pyasn1.codec.der import encoder
+
+ class AsnPubKey(univ.Sequence):
+ componentType = namedtype.NamedTypes(
+ namedtype.NamedType('modulus', univ.Integer()),
+ namedtype.NamedType('publicExponent', univ.Integer()),
+ )
+
+ # Create the ASN object
+ asn_key = AsnPubKey()
+ asn_key.setComponentByName('modulus', self.n)
+ asn_key.setComponentByName('publicExponent', self.e)
+
+ return encoder.encode(asn_key)
+
+ @classmethod
+ def _load_pkcs1_pem(cls, keyfile):
+ '''Loads a PKCS#1 PEM-encoded public key file.
+
+ The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and
+ after the "-----END RSA PUBLIC KEY-----" lines is ignored.
+
+ @param keyfile: contents of a PEM-encoded file that contains the public
+ key.
+ @return: a PublicKey object
+ '''
+
+ der = rsa.pem.load_pem(keyfile, 'RSA PUBLIC KEY')
+ return cls._load_pkcs1_der(der)
+
+ def _save_pkcs1_pem(self):
+ '''Saves a PKCS#1 PEM-encoded public key file.
+
+ @return: contents of a PEM-encoded file that contains the public key.
+ '''
+
+ der = self._save_pkcs1_der()
+ return rsa.pem.save_pem(der, 'RSA PUBLIC KEY')
+
+class PrivateKey(AbstractKey):
+ '''Represents a private RSA key.
+
+ This key is also known as the 'decryption key'. It contains the 'n', 'e',
+ 'd', 'p', 'q' and other values.
+
+ Supports attributes as well as dictionary-like access. Attribute accesss is
+ faster, though.
+
+ >>> PrivateKey(3247, 65537, 833, 191, 17)
+ PrivateKey(3247, 65537, 833, 191, 17)
+
+ exp1, exp2 and coef don't have to be given, they will be calculated:
+
+ >>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
+ >>> pk.exp1
+ 55063
+ >>> pk.exp2
+ 10095
+ >>> pk.coef
+ 50797
+
+ If you give exp1, exp2 or coef, they will be used as-is:
+
+ >>> pk = PrivateKey(1, 2, 3, 4, 5, 6, 7, 8)
+ >>> pk.exp1
+ 6
+ >>> pk.exp2
+ 7
+ >>> pk.coef
+ 8
+
+ '''
+
+ __slots__ = ('n', 'e', 'd', 'p', 'q', 'exp1', 'exp2', 'coef')
+
+ def __init__(self, n, e, d, p, q, exp1=None, exp2=None, coef=None):
+ self.n = n
+ self.e = e
+ self.d = d
+ self.p = p
+ self.q = q
+
+ # Calculate the other values if they aren't supplied
+ if exp1 is None:
+ self.exp1 = int(d % (p - 1))
+ else:
+ self.exp1 = exp1
+
+ if exp1 is None:
+ self.exp2 = int(d % (q - 1))
+ else:
+ self.exp2 = exp2
+
+ if coef is None:
+ (_, self.coef, _) = extended_gcd(q, p)
+ else:
+ self.coef = coef
+
+ def __getitem__(self, key):
+ return getattr(self, key)
+
+ def __repr__(self):
+ return u'PrivateKey(%(n)i, %(e)i, %(d)i, %(p)i, %(q)i)' % self
+
+ def __eq__(self, other):
+ if other is None:
+ return False
+
+ if not isinstance(other, PrivateKey):
+ return False
+
+ return (self.n == other.n and
+ self.e == other.e and
+ self.d == other.d and
+ self.p == other.p and
+ self.q == other.q and
+ self.exp1 == other.exp1 and
+ self.exp2 == other.exp2 and
+ self.coef == other.coef)
+
+ def __ne__(self, other):
+ return not (self == other)
+
+ @classmethod
+ def _load_pkcs1_der(cls, keyfile):
+ r'''Loads a key in PKCS#1 DER format.
+
+ @param keyfile: contents of a DER-encoded file that contains the private
+ key.
+ @return: a PrivateKey object
+
+ First let's construct a DER encoded key:
+
+ >>> import base64
+ >>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt'
+ >>> der = base64.decodestring(b64der)
+
+ This loads the file:
+
+ >>> PrivateKey._load_pkcs1_der(der)
+ PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
+
+ '''
+
+ from pyasn1.codec.der import decoder
+ (priv, _) = decoder.decode(keyfile)
+
+ # ASN.1 contents of DER encoded private key:
+ #
+ # RSAPrivateKey ::= SEQUENCE {
+ # version Version,
+ # modulus INTEGER, -- n
+ # publicExponent INTEGER, -- e
+ # privateExponent INTEGER, -- d
+ # prime1 INTEGER, -- p
+ # prime2 INTEGER, -- q
+ # exponent1 INTEGER, -- d mod (p-1)
+ # exponent2 INTEGER, -- d mod (q-1)
+ # coefficient INTEGER, -- (inverse of q) mod p
+ # otherPrimeInfos OtherPrimeInfos OPTIONAL
+ # }
+
+ if priv[0] != 0:
+ raise ValueError('Unable to read this file, version %s != 0' % priv[0])
+
+ as_ints = tuple(int(x) for x in priv[1:9])
+ return cls(*as_ints)
+
+ def _save_pkcs1_der(self):
+ '''Saves the private key in PKCS#1 DER format.
+
+ @returns: the DER-encoded private key.
+ '''
+
+ from pyasn1.type import univ, namedtype
+ from pyasn1.codec.der import encoder
+
+ class AsnPrivKey(univ.Sequence):
+ componentType = namedtype.NamedTypes(
+ namedtype.NamedType('version', univ.Integer()),
+ namedtype.NamedType('modulus', univ.Integer()),
+ namedtype.NamedType('publicExponent', univ.Integer()),
+ namedtype.NamedType('privateExponent', univ.Integer()),
+ namedtype.NamedType('prime1', univ.Integer()),
+ namedtype.NamedType('prime2', univ.Integer()),
+ namedtype.NamedType('exponent1', univ.Integer()),
+ namedtype.NamedType('exponent2', univ.Integer()),
+ namedtype.NamedType('coefficient', univ.Integer()),
+ )
+
+ # Create the ASN object
+ asn_key = AsnPrivKey()
+ asn_key.setComponentByName('version', 0)
+ asn_key.setComponentByName('modulus', self.n)
+ asn_key.setComponentByName('publicExponent', self.e)
+ asn_key.setComponentByName('privateExponent', self.d)
+ asn_key.setComponentByName('prime1', self.p)
+ asn_key.setComponentByName('prime2', self.q)
+ asn_key.setComponentByName('exponent1', self.exp1)
+ asn_key.setComponentByName('exponent2', self.exp2)
+ asn_key.setComponentByName('coefficient', self.coef)
+
+ return encoder.encode(asn_key)
+
+ @classmethod
+ def _load_pkcs1_pem(cls, keyfile):
+ '''Loads a PKCS#1 PEM-encoded private key file.
+
+ The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and
+ after the "-----END RSA PRIVATE KEY-----" lines is ignored.
+
+ @param keyfile: contents of a PEM-encoded file that contains the private
+ key.
+ @return: a PrivateKey object
+ '''
+
+ der = rsa.pem.load_pem(keyfile, 'RSA PRIVATE KEY')
+ return cls._load_pkcs1_der(der)
+
+ def _save_pkcs1_pem(self):
+ '''Saves a PKCS#1 PEM-encoded private key file.
+
+ @return: contents of a PEM-encoded file that contains the private key.
+ '''
+
+ der = self._save_pkcs1_der()
+ return rsa.pem.save_pem(der, 'RSA PRIVATE KEY')
+
+
+def extended_gcd(a, b):
+ """Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
+ """
+ # r = gcd(a,b) i = multiplicitive inverse of a mod b
+ # or j = multiplicitive inverse of b mod a
+ # Neg return values for i or j are made positive mod b or a respectively
+ # Iterateive Version is faster and uses much less stack space
+ x = 0
+ y = 1
+ lx = 1
+ ly = 0
+ oa = a #Remember original a/b to remove
+ ob = b #negative values from return results
+ while b != 0:
+ q = a // b
+ (a, b) = (b, a % b)
+ (x, lx) = ((lx - (q * x)),x)
+ (y, ly) = ((ly - (q * y)),y)
+ if (lx < 0): lx += ob #If neg wrap modulo orignal b
+ if (ly < 0): ly += oa #If neg wrap modulo orignal a
+ return (a, lx, ly) #Return only positive values
+
+def find_p_q(nbits, accurate=True):
+ ''''Returns a tuple of two different primes of nbits bits each.
+
+ The resulting p * q has exacty 2 * nbits bits, and the returned p and q
+ will not be equal.
+
+ @param nbits: the number of bits in each of p and q.
+ @param accurate: whether to enable accurate mode or not.
+ @returns (p, q), where p > q
+
+ >>> (p, q) = find_p_q(128)
+ >>> from rsa import common
+ >>> common.bit_size(p * q)
+ 256
+
+ When not in accurate mode, the number of bits can be slightly less
+
+ >>> (p, q) = find_p_q(128, accurate=False)
+ >>> from rsa import common
+ >>> common.bit_size(p * q) <= 256
+ True
+ >>> common.bit_size(p * q) > 240
+ True
+
+ '''
+
+ total_bits = nbits * 2
+
+ # Make sure that p and q aren't too close or the factoring programs can
+ # factor n.
+ shift = nbits // 16
+ pbits = nbits + shift
+ qbits = nbits - shift
+
+ # Choose the two initial primes
+ log.debug('find_p_q(%i): Finding p', nbits)
+ p = rsa.prime.getprime(pbits)
+ log.debug('find_p_q(%i): Finding q', nbits)
+ q = rsa.prime.getprime(qbits)
+
+ def is_acceptable(p, q):
+ '''Returns True iff p and q are acceptable:
+
+ - p and q differ
+ - (p * q) has the right nr of bits (when accurate=True)
+ '''
+
+ if p == q:
+ return False
+
+ if not accurate:
+ return True
+
+ # Make sure we have just the right amount of bits
+ found_size = rsa.common.bit_size(p * q)
+ return total_bits == found_size
+
+ # Keep choosing other primes until they match our requirements.
+ change_p = False
+ tries = 0
+ while not is_acceptable(p, q):
+ tries += 1
+ # Change p on one iteration and q on the other
+ if change_p:
+ log.debug(' find another p')
+ p = rsa.prime.getprime(pbits)
+ else:
+ log.debug(' find another q')
+ q = rsa.prime.getprime(qbits)
+
+ change_p = not change_p
+
+ # We want p > q as described on
+ # http://www.di-mgt.com.au/rsa_alg.html#crt
+ return (max(p, q), min(p, q))
+
+def calculate_keys(p, q, nbits):
+ """Calculates an encryption and a decryption key given p and q, and
+ returns them as a tuple (e, d)
+
+ """
+
+ phi_n = (p - 1) * (q - 1)
+
+ # A very common choice for e is 65537
+ e = 65537
+
+ (divider, d, _) = extended_gcd(e, phi_n)
+
+ if divider != 1:
+ raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
+ (e, phi_n))
+ if (d < 0):
+ raise ValueError("extended_gcd shouldn't return negative values, "
+ "please file a bug")
+ if (e * d) % phi_n != 1:
+ raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
+ "phi_n (%d)" % (e, d, phi_n))
+
+ return (e, d)
+
+def gen_keys(nbits, accurate=True):
+ """Generate RSA keys of nbits bits. Returns (p, q, e, d).
+
+ Note: this can take a long time, depending on the key size.
+
+ @param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
+ ``q`` will use ``nbits/2`` bits.
+ """
+
+ (p, q) = find_p_q(nbits // 2, accurate)
+ (e, d) = calculate_keys(p, q, nbits // 2)
+
+ return (p, q, e, d)
+
+def newkeys(nbits, accurate=True):
+ """Generates public and private keys, and returns them as (pub, priv).
+
+ The public key is also known as the 'encryption key', and is a
+ :py:class:`PublicKey` object. The private key is also known as the
+ 'decryption key' and is a :py:class:`PrivateKey` object.
+
+ :param nbits: the number of bits required to store ``n = p*q``.
+ :param accurate: when True, ``n`` will have exactly the number of bits you
+ asked for. However, this makes key generation much slower. When False,
+ `n`` may have slightly less bits.
+
+ :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)
+
+ """
+
+ if nbits < 16:
+ raise ValueError('Key too small')
+
+ (p, q, e, d) = gen_keys(nbits)
+
+ n = p * q
+
+ return (
+ PublicKey(n, e),
+ PrivateKey(n, e, d, p, q)
+ )
+
+__all__ = ['PublicKey', 'PrivateKey', 'newkeys']
+
+if __name__ == '__main__':
+ import doctest
+
+ try:
+ for count in range(100):
+ (failures, tests) = doctest.testmod()
+ if failures:
+ break
+
+ if (count and count % 10 == 0) or count == 1:
+ print '%i times' % count
+ except KeyboardInterrupt:
+ print 'Aborted'
+ else:
+ print 'Doctests done'
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''Functions that load and write PEM-encoded files.'''
+
+import base64
+
+def _markers(pem_marker):
+ '''Returns the start and end PEM markers
+
+ >>> _markers('RSA PRIVATE KEY')
+ ('-----BEGIN RSA PRIVATE KEY-----', '-----END RSA PRIVATE KEY-----')
+
+ '''
+
+ return ('-----BEGIN %s-----' % pem_marker,
+ '-----END %s-----' % pem_marker)
+
+def load_pem(contents, pem_marker):
+ '''Loads a PEM file.
+
+ @param contents: the contents of the file to interpret
+ @param pem_marker: the marker of the PEM content, such as 'RSA PRIVATE KEY'
+ when your file has '-----BEGIN RSA PRIVATE KEY-----' and
+ '-----END RSA PRIVATE KEY-----' markers.
+
+ @return the base64-decoded content between the start and end markers.
+
+ @raise ValueError: when the content is invalid, for example when the start
+ marker cannot be found.
+
+ '''
+
+ (pem_start, pem_end) = _markers(pem_marker)
+
+ pem_lines = []
+ in_pem_part = False
+
+ for line in contents.split('\n'):
+ line = line.strip()
+
+ # Skip empty lines
+ if not line:
+ continue
+
+ # Handle start marker
+ if line == pem_start:
+ if in_pem_part:
+ raise ValueError('Seen start marker "%s" twice' % pem_start)
+
+ in_pem_part = True
+ continue
+
+ # Skip stuff before first marker
+ if not in_pem_part:
+ continue
+
+ # Handle end marker
+ if in_pem_part and line == pem_end:
+ in_pem_part = False
+ break
+
+ # Load fields
+ if ':' in line:
+ continue
+
+ pem_lines.append(line)
+
+ # Do some sanity checks
+ if not pem_lines:
+ raise ValueError('No PEM start marker "%s" found' % pem_start)
+
+ if in_pem_part:
+ raise ValueError('No PEM end marker "%s" found' % pem_end)
+
+ # Base64-decode the contents
+ pem = ''.join(pem_lines)
+ return base64.decodestring(pem)
+
+def save_pem(contents, pem_marker):
+ '''Saves a PEM file.
+
+ @param contents: the contents to encode in PEM format
+ @param pem_marker: the marker of the PEM content, such as 'RSA PRIVATE KEY'
+ when your file has '-----BEGIN RSA PRIVATE KEY-----' and
+ '-----END RSA PRIVATE KEY-----' markers.
+
+ @return the base64-encoded content between the start and end markers.
+
+ '''
+
+ (pem_start, pem_end) = _markers(pem_marker)
+
+ b64 = base64.encodestring(contents).replace('\n', '')
+ pem_lines = [pem_start]
+
+ for block_start in range(0, len(b64), 64):
+ block = b64[block_start:block_start + 64]
+ pem_lines.append(block)
+
+ pem_lines.append(pem_end)
+ pem_lines.append('')
+
+ return '\n'.join(pem_lines)
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''Functions for PKCS#1 version 1.5 encryption and signing
+
+This module implements certain functionality from PKCS#1 version 1.5. For a
+very clear example, read http://www.di-mgt.com.au/rsa_alg.html#pkcs1schemes
+
+At least 8 bytes of random padding is used when encrypting a message. This makes
+these methods much more secure than the ones in the ``rsa`` module.
+
+WARNING: this module leaks information when decryption or verification fails.
+The exceptions that are raised contain the Python traceback information, which
+can be used to deduce where in the process the failure occurred. DO NOT PASS
+SUCH INFORMATION to your users.
+'''
+
+import hashlib
+import os
+
+from rsa import common, transform, core, varblock
+
+# ASN.1 codes that describe the hash algorithm used.
+HASH_ASN1 = {
+ 'MD5': '\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10',
+ 'SHA-1': '\x30\x21\x30\x09\x06\x05\x2b\x0e\x03\x02\x1a\x05\x00\x04\x14',
+ 'SHA-256': '\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20',
+ 'SHA-384': '\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30',
+ 'SHA-512': '\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40',
+}
+
+HASH_METHODS = {
+ 'MD5': hashlib.md5,
+ 'SHA-1': hashlib.sha1,
+ 'SHA-256': hashlib.sha256,
+ 'SHA-384': hashlib.sha384,
+ 'SHA-512': hashlib.sha512,
+}
+
+class CryptoError(Exception):
+ '''Base class for all exceptions in this module.'''
+
+class DecryptionError(CryptoError):
+ '''Raised when decryption fails.'''
+
+class VerificationError(CryptoError):
+ '''Raised when verification fails.'''
+
+def _pad_for_encryption(message, target_length):
+ r'''Pads the message for encryption, returning the padded message.
+
+ :return: 00 02 RANDOM_DATA 00 MESSAGE
+
+ >>> block = _pad_for_encryption('hello', 16)
+ >>> len(block)
+ 16
+ >>> block[0:2]
+ '\x00\x02'
+ >>> block[-6:]
+ '\x00hello'
+
+ '''
+
+ max_msglength = target_length - 11
+ msglength = len(message)
+
+ if msglength > max_msglength:
+ raise OverflowError('%i bytes needed for message, but there is only'
+ ' space for %i' % (msglength, max_msglength))
+
+ # Get random padding
+ padding = ''
+ padding_length = target_length - msglength - 3
+
+ # We remove 0-bytes, so we'll end up with less padding than we've asked for,
+ # so keep adding data until we're at the correct length.
+ while len(padding) < padding_length:
+ needed_bytes = padding_length - len(padding)
+
+ # Always read at least 8 bytes more than we need, and trim off the rest
+ # after removing the 0-bytes. This increases the chance of getting
+ # enough bytes, especially when needed_bytes is small
+ new_padding = os.urandom(needed_bytes + 5)
+ new_padding = new_padding.replace('\x00', '')
+ padding = padding + new_padding[:needed_bytes]
+
+ assert len(padding) == padding_length
+
+ return ''.join(['\x00\x02',
+ padding,
+ '\x00',
+ message])
+
+
+def _pad_for_signing(message, target_length):
+ r'''Pads the message for signing, returning the padded message.
+
+ The padding is always a repetition of FF bytes.
+
+ :return: 00 01 PADDING 00 MESSAGE
+
+ >>> block = _pad_for_signing('hello', 16)
+ >>> len(block)
+ 16
+ >>> block[0:2]
+ '\x00\x01'
+ >>> block[-6:]
+ '\x00hello'
+ >>> block[2:-6]
+ '\xff\xff\xff\xff\xff\xff\xff\xff'
+
+ '''
+
+ max_msglength = target_length - 11
+ msglength = len(message)
+
+ if msglength > max_msglength:
+ raise OverflowError('%i bytes needed for message, but there is only'
+ ' space for %i' % (msglength, max_msglength))
+
+ padding_length = target_length - msglength - 3
+
+ return ''.join(['\x00\x01',
+ padding_length * '\xff',
+ '\x00',
+ message])
+
+
+def encrypt(message, pub_key):
+ '''Encrypts the given message using PKCS#1 v1.5
+
+ :param message: the message to encrypt. Must be a byte string no longer than
+ ``k-11`` bytes, where ``k`` is the number of bytes needed to encode
+ the ``n`` component of the public key.
+ :param pub_key: the :py:class:`rsa.PublicKey` to encrypt with.
+ :raise OverflowError: when the message is too large to fit in the padded
+ block.
+
+ >>> from rsa import key, common
+ >>> (pub_key, priv_key) = key.newkeys(256)
+ >>> message = 'hello'
+ >>> crypto = encrypt(message, pub_key)
+
+ The crypto text should be just as long as the public key 'n' component:
+
+ >>> len(crypto) == common.byte_size(pub_key.n)
+ True
+
+ '''
+
+ keylength = common.byte_size(pub_key.n)
+ padded = _pad_for_encryption(message, keylength)
+
+ payload = transform.bytes2int(padded)
+ encrypted = core.encrypt_int(payload, pub_key.e, pub_key.n)
+ block = transform.int2bytes(encrypted, keylength)
+
+ return block
+
+def decrypt(crypto, priv_key):
+ r'''Decrypts the given message using PKCS#1 v1.5
+
+ The decryption is considered 'failed' when the resulting cleartext doesn't
+ start with the bytes 00 02, or when the 00 byte between the padding and
+ the message cannot be found.
+
+ :param crypto: the crypto text as returned by :py:func:`rsa.encrypt`
+ :param priv_key: the :py:class:`rsa.PrivateKey` to decrypt with.
+ :raise DecryptionError: when the decryption fails. No details are given as
+ to why the code thinks the decryption fails, as this would leak
+ information about the private key.
+
+
+ >>> import rsa
+ >>> (pub_key, priv_key) = rsa.newkeys(256)
+
+ It works with strings:
+
+ >>> crypto = encrypt('hello', pub_key)
+ >>> decrypt(crypto, priv_key)
+ 'hello'
+
+ And with binary data:
+
+ >>> crypto = encrypt('\x00\x00\x00\x00\x01', pub_key)
+ >>> decrypt(crypto, priv_key)
+ '\x00\x00\x00\x00\x01'
+
+ Altering the encrypted information will *likely* cause a
+ :py:class:`rsa.pkcs1.DecryptionError`. If you want to be *sure*, use
+ :py:func:`rsa.sign`.
+
+
+ .. warning::
+
+ Never display the stack trace of a
+ :py:class:`rsa.pkcs1.DecryptionError` exception. It shows where in the
+ code the exception occurred, and thus leaks information about the key.
+ It's only a tiny bit of information, but every bit makes cracking the
+ keys easier.
+
+ >>> crypto = encrypt('hello', pub_key)
+ >>> crypto = 'X' + crypto[1:] # change the first byte
+ >>> decrypt(crypto, priv_key)
+ Traceback (most recent call last):
+ ...
+ DecryptionError: Decryption failed
+
+ '''
+
+ blocksize = common.byte_size(priv_key.n)
+ encrypted = transform.bytes2int(crypto)
+ decrypted = core.decrypt_int(encrypted, priv_key.d, priv_key.n)
+ cleartext = transform.int2bytes(decrypted, blocksize)
+
+ # If we can't find the cleartext marker, decryption failed.
+ if cleartext[0:2] != '\x00\x02':
+ raise DecryptionError('Decryption failed')
+
+ # Find the 00 separator between the padding and the message
+ try:
+ sep_idx = cleartext.index('\x00', 2)
+ except ValueError:
+ raise DecryptionError('Decryption failed')
+
+ return cleartext[sep_idx+1:]
+
+def sign(message, priv_key, hash):
+ '''Signs the message with the private key.
+
+ Hashes the message, then signs the hash with the given key. This is known
+ as a "detached signature", because the message itself isn't altered.
+
+ :param message: the message to sign. Can be an 8-bit string or a file-like
+ object. If ``message`` has a ``read()`` method, it is assumed to be a
+ file-like object.
+ :param priv_key: the :py:class:`rsa.PrivateKey` to sign with
+ :param hash: the hash method used on the message. Use 'MD5', 'SHA-1',
+ 'SHA-256', 'SHA-384' or 'SHA-512'.
+ :return: a message signature block.
+ :raise OverflowError: if the private key is too small to contain the
+ requested hash.
+
+ '''
+
+ # Get the ASN1 code for this hash method
+ if hash not in HASH_ASN1:
+ raise ValueError('Invalid hash method: %s' % hash)
+ asn1code = HASH_ASN1[hash]
+
+ # Calculate the hash
+ hash = _hash(message, hash)
+
+ # Encrypt the hash with the private key
+ cleartext = asn1code + hash
+ keylength = common.byte_size(priv_key.n)
+ padded = _pad_for_signing(cleartext, keylength)
+
+ payload = transform.bytes2int(padded)
+ encrypted = core.encrypt_int(payload, priv_key.d, priv_key.n)
+ block = transform.int2bytes(encrypted, keylength)
+
+ return block
+
+def verify(message, signature, pub_key):
+ '''Verifies that the signature matches the message.
+
+ The hash method is detected automatically from the signature.
+
+ :param message: the signed message. Can be an 8-bit string or a file-like
+ object. If ``message`` has a ``read()`` method, it is assumed to be a
+ file-like object.
+ :param signature: the signature block, as created with :py:func:`rsa.sign`.
+ :param pub_key: the :py:class:`rsa.PublicKey` of the person signing the message.
+ :raise VerificationError: when the signature doesn't match the message.
+
+ .. warning::
+
+ Never display the stack trace of a
+ :py:class:`rsa.pkcs1.VerificationError` exception. It shows where in
+ the code the exception occurred, and thus leaks information about the
+ key. It's only a tiny bit of information, but every bit makes cracking
+ the keys easier.
+
+ '''
+
+ blocksize = common.byte_size(pub_key.n)
+ encrypted = transform.bytes2int(signature)
+ decrypted = core.decrypt_int(encrypted, pub_key.e, pub_key.n)
+ clearsig = transform.int2bytes(decrypted, blocksize)
+
+ # If we can't find the signature marker, verification failed.
+ if clearsig[0:2] != '\x00\x01':
+ raise VerificationError('Verification failed')
+
+ # Find the 00 separator between the padding and the payload
+ try:
+ sep_idx = clearsig.index('\x00', 2)
+ except ValueError:
+ raise VerificationError('Verification failed')
+
+ # Get the hash and the hash method
+ (method_name, signature_hash) = _find_method_hash(clearsig[sep_idx+1:])
+ message_hash = _hash(message, method_name)
+
+ # Compare the real hash to the hash in the signature
+ if message_hash != signature_hash:
+ raise VerificationError('Verification failed')
+
+def _hash(message, method_name):
+ '''Returns the message digest.
+
+ :param message: the signed message. Can be an 8-bit string or a file-like
+ object. If ``message`` has a ``read()`` method, it is assumed to be a
+ file-like object.
+ :param method_name: the hash method, must be a key of
+ :py:const:`HASH_METHODS`.
+
+ '''
+
+ if method_name not in HASH_METHODS:
+ raise ValueError('Invalid hash method: %s' % method_name)
+
+ method = HASH_METHODS[method_name]
+ hasher = method()
+
+ if hasattr(message, 'read') and hasattr(message.read, '__call__'):
+ # read as 1K blocks
+ for block in varblock.yield_fixedblocks(message, 1024):
+ hasher.update(block)
+ else:
+ # hash the message object itself.
+ hasher.update(message)
+
+ return hasher.digest()
+
+
+def _find_method_hash(method_hash):
+ '''Finds the hash method and the hash itself.
+
+ :param method_hash: ASN1 code for the hash method concatenated with the
+ hash itself.
+
+ :return: tuple (method, hash) where ``method`` is the used hash method, and
+ ``hash`` is the hash itself.
+
+ :raise VerificationFailed: when the hash method cannot be found
+
+ '''
+
+ for (hashname, asn1code) in HASH_ASN1.iteritems():
+ if not method_hash.startswith(asn1code):
+ continue
+
+ return (hashname, method_hash[len(asn1code):])
+
+ raise VerificationError('Verification failed')
+
+
+__all__ = ['encrypt', 'decrypt', 'sign', 'verify',
+ 'DecryptionError', 'VerificationError', 'CryptoError']
+
+if __name__ == '__main__':
+ print 'Running doctests 1000x or until failure'
+ import doctest
+
+ for count in range(1000):
+ (failures, tests) = doctest.testmod()
+ if failures:
+ break
+
+ if count and count % 100 == 0:
+ print '%i times' % count
+
+ print 'Doctests done'
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''Numerical functions related to primes.'''
+
+__all__ = [ 'getprime', 'are_relatively_prime']
+
+import rsa.randnum
+
+def gcd(p, q):
+ """Returns the greatest common divisor of p and q
+
+ >>> gcd(48, 180)
+ 12
+ """
+
+ while q != 0:
+ if p < q: (p,q) = (q,p)
+ (p,q) = (q, p % q)
+ return p
+
+
+def jacobi(a, b):
+ """Calculates the value of the Jacobi symbol (a/b) where both a and b are
+ positive integers, and b is odd
+ """
+
+ if a == 0: return 0
+ result = 1
+ while a > 1:
+ if a & 1:
+ if ((a-1)*(b-1) >> 2) & 1:
+ result = -result
+ a, b = b % a, a
+ else:
+ if (((b * b) - 1) >> 3) & 1:
+ result = -result
+ a >>= 1
+ if a == 0: return 0
+ return result
+
+def jacobi_witness(x, n):
+ """Returns False if n is an Euler pseudo-prime with base x, and
+ True otherwise.
+ """
+
+ j = jacobi(x, n) % n
+ f = pow(x, (n - 1) // 2, n)
+
+ if j == f: return False
+ return True
+
+def randomized_primality_testing(n, k):
+ """Calculates whether n is composite (which is always correct) or
+ prime (which is incorrect with error probability 2**-k)
+
+ Returns False if the number is composite, and True if it's
+ probably prime.
+ """
+
+ # 50% of Jacobi-witnesses can report compositness of non-prime numbers
+
+ for _ in range(k):
+ x = rsa.randnum.randint(n-1)
+ if jacobi_witness(x, n): return False
+
+ return True
+
+def is_prime(number):
+ """Returns True if the number is prime, and False otherwise.
+
+ >>> is_prime(42)
+ False
+ >>> is_prime(41)
+ True
+ """
+
+ return randomized_primality_testing(number, 6)
+
+def getprime(nbits):
+ """Returns a prime number that can be stored in 'nbits' bits.
+
+ >>> p = getprime(128)
+ >>> is_prime(p-1)
+ False
+ >>> is_prime(p)
+ True
+ >>> is_prime(p+1)
+ False
+
+ >>> from rsa import common
+ >>> common.bit_size(p) <= 128
+ True
+
+ """
+
+ while True:
+ integer = rsa.randnum.read_random_int(nbits)
+
+ # Make sure it's odd
+ integer |= 1
+
+ # Test for primeness
+ if is_prime(integer):
+ return integer
+
+ # Retry if not prime
+
+
+def are_relatively_prime(a, b):
+ """Returns True if a and b are relatively prime, and False if they
+ are not.
+
+ >>> are_relatively_prime(2, 3)
+ 1
+ >>> are_relatively_prime(2, 4)
+ 0
+ """
+
+ d = gcd(a, b)
+ return (d == 1)
+
+if __name__ == '__main__':
+ print 'Running doctests 1000x or until failure'
+ import doctest
+
+ for count in range(1000):
+ (failures, tests) = doctest.testmod()
+ if failures:
+ break
+
+ if count and count % 100 == 0:
+ print '%i times' % count
+
+ print 'Doctests done'
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''Functions for generating random numbers.'''
+
+# Source inspired by code by Yesudeep Mangalapilly <yesudeep@gmail.com>
+
+import os
+
+from rsa import common, transform
+
+def read_random_bits(nbits):
+ '''Reads 'nbits' random bits.
+
+ If nbits isn't a whole number of bytes, an extra byte will be appended with
+ only the lower bits set.
+ '''
+
+ nbytes, rbits = divmod(nbits, 8)
+
+ # Get the random bytes
+ randomdata = os.urandom(nbytes)
+
+ # Add the remaining random bits
+ if rbits > 0:
+ randomvalue = ord(os.urandom(1))
+ randomvalue >>= (8 - rbits)
+ randomdata = chr(randomvalue) + randomdata
+
+ return randomdata
+
+
+def read_random_int(nbits):
+ """Reads a random integer of approximately nbits bits.
+ """
+
+ randomdata = read_random_bits(nbits)
+ value = transform.bytes2int(randomdata)
+
+ # Ensure that the number is large enough to just fill out the required
+ # number of bits.
+ value |= 1 << (nbits - 1)
+
+ return value
+
+def randint(maxvalue):
+ """Returns a random integer x with 1 <= x <= maxvalue
+
+ May take a very long time in specific situations. If maxvalue needs N bits
+ to store, the closer maxvalue is to (2 ** N) - 1, the faster this function
+ is.
+ """
+
+ bit_size = common.bit_size(maxvalue)
+
+ tries = 0
+ while True:
+ value = read_random_int(bit_size)
+ if value <= maxvalue:
+ break
+
+ if tries and tries % 10 == 0:
+ # After a lot of tries to get the right number of bits but still
+ # smaller than maxvalue, decrease the number of bits by 1. That'll
+ # dramatically increase the chances to get a large enough number.
+ bit_size -= 1
+ tries += 1
+
+ return value
+
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''Data transformation functions.
+
+From bytes to a number, number to bytes, etc.
+'''
+
+import types
+import binascii
+
+from rsa import common
+
+def bytes2int(bytes):
+ r"""Converts a list of bytes or an 8-bit string to an integer.
+
+ When using unicode strings, encode it to some encoding like UTF8 first.
+
+ >>> (((128 * 256) + 64) * 256) + 15
+ 8405007
+ >>> bytes2int('\x80@\x0f')
+ 8405007
+
+ """
+
+ return int(binascii.hexlify(bytes), 16)
+
+def int2bytes(number, block_size=None):
+ r'''Converts a number to a string of bytes.
+
+ @param number: the number to convert
+ @param block_size: the number of bytes to output. If the number encoded to
+ bytes is less than this, the block will be zero-padded. When not given,
+ the returned block is not padded.
+
+ @throws OverflowError when block_size is given and the number takes up more
+ bytes than fit into the block.
+
+
+ >>> int2bytes(123456789)
+ '\x07[\xcd\x15'
+ >>> bytes2int(int2bytes(123456789))
+ 123456789
+
+ >>> int2bytes(123456789, 6)
+ '\x00\x00\x07[\xcd\x15'
+ >>> bytes2int(int2bytes(123456789, 128))
+ 123456789
+
+ >>> int2bytes(123456789, 3)
+ Traceback (most recent call last):
+ ...
+ OverflowError: Needed 4 bytes for number, but block size is 3
+
+ '''
+
+ # Type checking
+ if type(number) not in (types.LongType, types.IntType):
+ raise TypeError("You must pass an integer for 'number', not %s" %
+ number.__class__)
+
+ if number < 0:
+ raise ValueError('Negative numbers cannot be used: %i' % number)
+
+ # Do some bounds checking
+ if block_size is not None:
+ needed_bytes = common.byte_size(number)
+ if needed_bytes > block_size:
+ raise OverflowError('Needed %i bytes for number, but block size '
+ 'is %i' % (needed_bytes, block_size))
+
+ # Convert the number to bytes.
+ bytes = []
+ while number > 0:
+ bytes.insert(0, chr(number & 0xFF))
+ number >>= 8
+
+ # Pad with zeroes to fill the block
+ if block_size is not None:
+ padding = (block_size - needed_bytes) * '\x00'
+ else:
+ padding = ''
+
+ return padding + ''.join(bytes)
+
+
+if __name__ == '__main__':
+ import doctest
+ doctest.testmod()
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''Utility functions.'''
+
+import sys
+from optparse import OptionParser
+
+import rsa.key
+
+def private_to_public():
+ '''Reads a private key and outputs the corresponding public key.'''
+
+ # Parse the CLI options
+ parser = OptionParser(usage='usage: %prog [options]',
+ description='Reads a private key and outputs the '
+ 'corresponding public key. Both private and public keys use '
+ 'the format described in PKCS#1 v1.5')
+
+ parser.add_option('-i', '--input', dest='infilename', type='string',
+ help='Input filename. Reads from stdin if not specified')
+ parser.add_option('-o', '--output', dest='outfilename', type='string',
+ help='Output filename. Writes to stdout of not specified')
+
+ parser.add_option('--inform', dest='inform',
+ help='key format of input - default PEM',
+ choices=('PEM', 'DER'), default='PEM')
+
+ parser.add_option('--outform', dest='outform',
+ help='key format of output - default PEM',
+ choices=('PEM', 'DER'), default='PEM')
+
+ (cli, cli_args) = parser.parse_args(sys.argv)
+
+ # Read the input data
+ if cli.infilename:
+ print >>sys.stderr, 'Reading private key from %s in %s format' % \
+ (cli.infilename, cli.inform)
+ with open(cli.infilename) as infile:
+ in_data = infile.read()
+ else:
+ print >>sys.stderr, 'Reading private key from stdin in %s format' % \
+ cli.inform
+ in_data = sys.stdin.read()
+
+
+ # Take the public fields and create a public key
+ priv_key = rsa.key.PrivateKey.load_pkcs1(in_data, cli.inform)
+ pub_key = rsa.key.PublicKey(priv_key.n, priv_key.e)
+
+ # Save to the output file
+ out_data = pub_key.save_pkcs1(cli.outform)
+
+ if cli.outfilename:
+ print >>sys.stderr, 'Writing public key to %s in %s format' % \
+ (cli.outfilename, cli.outform)
+ with open(cli.outfilename, 'w') as outfile:
+ outfile.write(out_data)
+ else:
+ print >>sys.stderr, 'Writing public key to stdout in %s format' % \
+ cli.outform
+ sys.stdout.write(out_data)
+
+
--- /dev/null
+# -*- coding: utf-8 -*-
+#
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+'''VARBLOCK file support
+
+The VARBLOCK file format is as follows, where || denotes byte concatenation:
+
+ FILE := VERSION || BLOCK || BLOCK ...
+
+ BLOCK := LENGTH || DATA
+
+ LENGTH := varint-encoded length of the subsequent data. Varint comes from
+ Google Protobuf, and encodes an integer into a variable number of bytes.
+ Each byte uses the 7 lowest bits to encode the value. The highest bit set
+ to 1 indicates the next byte is also part of the varint. The last byte will
+ have this bit set to 0.
+
+This file format is called the VARBLOCK format, in line with the varint format
+used to denote the block sizes.
+
+'''
+
+VARBLOCK_VERSION = 1
+
+def read_varint(infile):
+ '''Reads a varint from the file.
+
+ When the first byte to be read indicates EOF, (0, 0) is returned. When an
+ EOF occurs when at least one byte has been read, an EOFError exception is
+ raised.
+
+ @param infile: the file-like object to read from. It should have a read()
+ method.
+ @returns (varint, length), the read varint and the number of read bytes.
+ '''
+
+ varint = 0
+ read_bytes = 0
+
+ while True:
+ char = infile.read(1)
+ if len(char) == 0:
+ if read_bytes == 0:
+ return (0, 0)
+ raise EOFError('EOF while reading varint, value is %i so far' %
+ varint)
+
+ byte = ord(char)
+ varint += (byte & 0x7F) << (7 * read_bytes)
+
+ read_bytes += 1
+
+ if not byte & 0x80:
+ return (varint, read_bytes)
+
+def write_varint(outfile, value):
+ '''Writes a varint to a file.
+
+ @param outfile: the file-like object to write to. It should have a write()
+ method.
+ @returns the number of written bytes.
+ '''
+
+ # there is a big difference between 'write the value 0' (this case) and
+ # 'there is nothing left to write' (the false-case of the while loop)
+
+ if value == 0:
+ outfile.write('\x00')
+ return 1
+
+ written_bytes = 0
+ while value > 0:
+ to_write = value & 0x7f
+ value = value >> 7
+
+ if value > 0:
+ to_write |= 0x80
+
+ outfile.write(chr(to_write))
+ written_bytes += 1
+
+ return written_bytes
+
+
+def yield_varblocks(infile):
+ '''Generator, yields each block in the input file.
+
+ @param infile: file to read, is expected to have the VARBLOCK format as
+ described in the module's docstring.
+ @yields the contents of each block.
+ '''
+
+ # Check the version number
+ first_char = infile.read(1)
+ if len(first_char) == 0:
+ raise EOFError('Unable to read VARBLOCK version number')
+
+ version = ord(first_char)
+ if version != VARBLOCK_VERSION:
+ raise ValueError('VARBLOCK version %i not supported' % version)
+
+ while True:
+ (block_size, read_bytes) = read_varint(infile)
+
+ # EOF at block boundary, that's fine.
+ if read_bytes == 0 and block_size == 0:
+ break
+
+ block = infile.read(block_size)
+
+ read_size = len(block)
+ if read_size != block_size:
+ raise EOFError('Block size is %i, but could read only %i bytes' %
+ (block_size, read_size))
+
+
+ yield block
+
+def yield_fixedblocks(infile, blocksize):
+ '''Generator, yields each block of ``blocksize`` bytes in the input file.
+
+ :param infile: file to read and separate in blocks.
+ :returns: a generator that yields the contents of each block
+ '''
+
+ while True:
+ block = infile.read(blocksize)
+
+ read_bytes = len(block)
+ if read_bytes == 0:
+ break
+
+ yield block
+
+ if read_bytes < blocksize:
+ break
+